
Second Fundamental Theorem of Calculus 
We are going to look at the integral where the variable is the 
upper limit. To avoid confusion, we will use t as the variable of 
integration. 

Let’s consider the following integral: 

Notice this is a function of x. 

So,  represents a function of x. 
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Since integral is an antiderivative, we can use F(x). 

From our previous example: 

Now find F'. 

This is just f(t) evaluated at the upper limit. 
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This leads us to the Second Fundamental Theorem of 
Calculus: 

or 

This means every continuous function has an antiderivative. 

Example: For the following function, find F' in two ways. 

By the Second FTC: 

        F'(x) = cos x 

Long way: 

If F(x) =                 , then F'(x) = f(x). 
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F(x) = sin x
′ F (x) = cos x
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What happens as x varies? 

As x increases, the area under the curve increases. We are 
accumulating area. The integral is an accumulation function. 
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Example: 

Example: 

For each of the following, find F'. 

This second example involves the chain rule. If the upper 
limit has a derivative that is not equal to 1, then we have to 
use the chain rule. 

Derivative of x3 
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Example:  

Again, we have to take the derivative of cos x, since that is the 
upper limit. 

Derivative of cos x 
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